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The non-linear Schrodinger model as a special continuum limit 
of the anisotropic Heisenberg model? 
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Fachrichtung Theoretische Physik, Universitat des Saarlandes, 6600 Saarbrucken, 
West Germany 

Received 28 April 1986, in final form 26 November 1986 

Abstract. One-dimensional spin chains are investigated by constructing a mapping of the 
anisotropic Heisenberg model in the limit A +  1 onto the non-linear Schrodinger model (a 
gas of bosons with S function interactions). Three applications of this mapping are given. 
First it is shown that the Bethe ansatz solutions of the anisotropic spin-; Heisenberg model 
go over to the continuous Bethe ansatz solutions of the non-linear Schrodinger model. 
Then bound-state energies for arbitrary spin are calculated and as a third application 
a nearly identical mapping of the anisotropic spin-i Heisenberg model in the limit 4 + 0 
onto a non-linear Schrodinger model for fermion fields is given. Finally we construct 
an anisotropic SU(X) model. The continuum limit of this model we show to be the 
(N-1)-component non-linear Schrodinger model, which can be solved by means of the 
nested Bethe ansatz. 

1. Introduction 

In this paper we investigate the mapping of the anisotropic Heisenberg model ( X X Z  
model) 

i = l  i = l  

onto the Hamiltonian of the so-called non-lineai Sckr4dinger model (NLS model): 

ZNLS = dx(d,'Pt (x)d,V( x)  + CY'( x)*+( x)*( x)*( x)). (2) s 
In (1) S:,  S:, S: are the Cartesian components of the spin operator at site i, A is the 
anisotropy parameter, Ho parametrises the strength of the external magnetic field and 
s =f, I,:,. . . is the spin quantum number. 

In expression (2) T ( x )  is a non-relativistic boson field obeying canonical commuta- 
tion relations 

M X ) ,  *+(Y)I  = S(x-y)  

[WX), W y ) l =  [ W X ) ,  *+(y)l= 0 
(3) 

and c s 0 applies to the attractive two-body interaction. 
Both models and their solutions by means of a Bethe ansatz are well known [ 1-51. 

The Bethe ansatz solution of the X X Z  model holds for s = f . For higher spin, the 

t Work supported by Deutsche Forschungsgemeinschaft within SFB 130. 

0305-4470/87/113327 + 12$02.50 @ 1987 IOP Publishing Ltd 3327 



3328 B Golzer and A Holz 

X X Z  model as defined by (1 )  is not exactly integrable and is not well understood 
even in one dimension. In contrast, classical Heisenberg spin chains are again exactly 
soluble. The correspondence between classical anisotropic Heisenberg magnets and 
the non-linear Schrodinger equation has been discussed by Nakamura and Sasada [ 6 ]  
and Kundu and Pashaev [7]. In  the quantum case the connection between X X Z  model 
and NLS model has been noticed by Kulish and Sklyanin [8] in the extreme quantum 
limit s = within the context of the inverse scattering method and also by Schneider 
[9]. I t  is this correspondence which we will investigate in the following in detail. 

For this purpose, first of all the spin operators on the linear chain have to be 
replaced by operators which obey the commutation relations of Bose operators. Several 
such transformations are known in the theory of spin waves-here we will use 
the Dyson-Maleev transformation. The continuum and weak-coupling limit of the 
anisotropic Heisenberg model yields, after a renormalisation of the energy, exactly the 
NLS model with the relation 

A = 1 - sca 

between the coupling parameters A and c of the two models, and a is the lattice constant. 
The outline of this paper is as follows. In § 2 the mapping of the X X Z  model onto 

the NLS model is constructed. Eigenstates and eigenvalues of the NLS model are 
obtained by means of that mapping and are found to be in accordance with the direct 
solution of the NLS model by Thacker [ 13. Next we investigate whether the mapping 
can be inverted. The calculations leading to the basic formulae (19) and (20) of the 
mapping are valid for arbitrary spin s. Accordingly the bound-state energies of the 
NLS model are used to derive an approximate formula for the bound-state energies of 
the weakly anisotropic ( A  - 1 << 1) Heisenberg model for arbitrary spin s by means of 
the inverted mapping. In  5 3 an analogous mapping of anisotropic SU(2s+ 1) chains 
onto NLS models with 2s components is constructed. These SU(2s + 1) chains represent 
a different approach to higher spin as compared to (1). They may be rewritten in 
terms of spin-s SU(2) chains with Schrodinger-type exchange interaction instead of 
the usual Heisenberg-Dirac-Van Vieck exchange interaction. The results are discussed 
in § 4. 

2. Mapping of the X X Z  model onto the NLS model 

2.1. Occupation number formalism for the Heisenberg spin chain 

The states of a one-dimensional spin chain with respect to the action of the anisotropic 
Heisenberg (or X X Z )  Hamiltonian ( 1 )  for s = i ,  l , ; , .  . . , can be classified by means 
of an occupation number formalism. Taking as a reference (or vacuum) state the state 
with all spins aligned, the number n, with values between 0 and 2s 

n, = m , + s  m,  = eigenvalue of S: (4) 

counts the spin deviations at site i of the chain and is a suitable occupation number 
(cf figure 1). In addition, the Hamiltonian (1) commutes with the operator Szp, the z 
component of the total spin, S:p = Z, S:. Therefore the common eigenstates can be 
classified according to the eigenvalues of the operator S:p. Eigenstates with specified 
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Spin chain 

5;  8; 3,' 

Figure 1. A state of the spin chain containing two spin deviations. A certain superposition 
of such states leads to a 2-magnon eigenstate. 

n, where 

n = S ' + N s  S' = eigenvalue of S& ( 5 )  

are called n-magnon states. 

operators S:, Si, S: with their commutation relations 
This classification scheme for the states emerges naturally, if, instead of the spin 

Is;, S L l =  i E I , k S : L  n , m E N  (6) 

S: = S:+i Si S; = S: - i  S: ( 7 )  

[ s:, s:] = s: [s:, s;] = -s; [s:, s;] = 2s:. (8)  

s:Jn,) = [(2s - n , ) ( n ,  + 1 ) ] ' ' ~ 1 n ,  + 1 )  

S;ln, + I ) =  [(2s - n , ) ( n ,  + 1 ) ] ' ' ~ 1 n , )  

S:lnJ = ( 4  - din,). 

ascending and descending operators are defined 

obeying the commutation relations 

The action of these operators on the spin states is given by 

(9) 

That implies S: characterises the state at site i ,  S: creates spin deviations and S; 
annihilates spin deviations. In terms of these operators, the Hamiltonian ( 1 )  can be 
written as 

N N 

, = I  I = '  

X x x ,  = - C (f( Sy+ 1 S: + S:+ 1 S ; )  + A( S:Si+ I - s*) )  + Ho C S:. (10 )  

I t  is impossible to diagonalise X by a canonical transformation, but it is possible to 
transform to new sets of variables, being either pure Bose or pure Fermi operators, so 
that X maintains a relatively simple form. In the ensuing section the Dyson-Maleev 
transformation to Bose operators will be applied to this Hamiltonian. The Hamiltonian 
then describes a one-dimensional chain with boson-like excitations. In a special 
continuum limit this system can be mapped onto the Hamiltonian of the NLS model. 

2.2. Dyson- Maleev transformation to Bose operators 

A detailed treatment of this transformation may be found in the textbook by Akhiezer 
et a1 [ l o ] .  The most important point is: a one-dimensional chain with boson-like 
excitations admits more states than a corresponding spin chain, because infinitely many 
bosons may be created above one site, whereas only 2s spin deviations are possible 
in the original model (cf figure 2). 
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yi; i$i ~ - 0 
S i t e s  o f  the chain 

Figure 2. A one-dimensional chain with boson-like excitations. 

These additional states of the Bose chain, however, do not affect our procedure, 
because a given state of the spin chain is automatically mapped onto a corresponding 
state of the Bose chain located in the sector with excitations between 0 and 2s per 
site, and in the following we are only interested in that part of the Hilbert space. 

The Dyson-Maleev transformation leading to Bose operators is given by 

s; = (2s ) ’”a ,  ( 1 1 )  

S : = - s + a : a , .  

It is easy to check that if the a,, a: obey canonical commutation relations for Bose 
operators 

then the s”:, s; and sf on the left-hand side fulfil the same commutation relations as 
the spin operators S:,  S ;  and S: .  Note from ( 1 1 )  that a,, a: and s,, s’: cannot at 
the same time be Hermitian conjugates. This inherent difficulty of the Dyson-Maleev 
transformation plays no role here, for the Hamiltonian (10 )  contains only terms bilinear 
in S: and S ;  and hence in a: and a, (the distinction between i and i + l  will vanish 
in the continuum limit). Accordingly the spin operators in (10) may be replaced by 
the tilded spin operators. 

Applying the Dyson-Maleev transformation ( 1 1 )  to X ,  one obtains the rep- 
resentation 

i = l  

2.3. The continuum limit 

The intended limit will cause a transmutation of the discrete chain so far considered 
with N spins to a continuum model of length L = Nu, where a is the lattice constant. 
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This is achieved by subjecting the Bose operators defined at discrete lattice sites to a 
Fourier transformation 

and carrying out the usual limiting procedure within the Fourier representation 

Finally one transforms back to real space by means of the inverse Fourier transformation 

'P(k)=- / dx exp(ikx)?(x). 
(2 7r)"2 

This three-step procedure results in the new Hamiltonian 

XXXZ=-HONS+(~SA+H~) dx 'Pt(x) 'P(x)  5 
- -s  

+ a  / d x [ i ( 9 t ( x ) 9 t ( x ) 9 ( x ) 9 ( x + a ) + 9 t ( x ) 9 t ( x ) 9 ( x ) V ( x  - a ) )  

dx(T t (x+  a ) T ( x )  +Yt (x  - a) 'P(x)) 

- A"'( x + ~ ) 9 (  x + a )'P(x)]. (17) 
Here 9 ( x ) ,  Y'(x) are Bose field operators fulfilling the canonical commutation relations 
(3). Making use of A = 1 + ( A  - 1) and Taylor expanding "(x f a )  and Vt(x f a )  in 
powers of the lattice constant a, the following representation for X is easily obtained 

Xxxz =HoS,",,,,f+2~(A-l) dx ' ~ " ( x ) ~ ( x ) + s u ~  dx dX'P'(x)dxY(x) 

(18) 

where HoS:r,n,r= Ha dx q t ( x ) 9 ( x )  - HoNs  has been introduced as an abbreviation 
for the terms resulting from HoS& after the various transformations. 

The individual terms in (18) exhibit remarkable similarities with the non-linear 
Schrodinger model defined by (2), but in the ordinary continuum limit a + 0, N + CO, 

L= Na = constant, X +  X / s a 2 ,  the interaction term would diverge. 
The desired representation of the NLS Hamiltonian as a special continuum limit of 

the X X Z  Hamiltonian is obtained by means of the following scaling of the anisotropy 
parameter A: 

(19)  
Only then the continuum limit for X given by (18) with simultaneous subtraction of 
divergent terms results in 

I 5 
-a(A-1) ~ X ~ ~ ( X ) ~ ~ ( X ) ~ ( X ) V ' ( X ) + O ( ~ ~ )  5 

A = 1 - sca + i m 2 a 2 .  

X X X Z - H O S : ~ ~ ~ ~ ~ + ~ S ~ C ~  J d x  'P t (x)9(x)  
sa - dx(a,9t(x)a,V(x)+ m2qt(x) 'P(x)  + c 9 t ( x ) q t ( x ) 9 ( x ) 9 ( x ) )  (20) 

and hence, for m 2 = 0 ,  yields exactly the non-linear Schrodinger model of equation 
( 2 ) .  For m 2  # 0 the model contains in addition a rest mass term. 

a-0 
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The formulae (19) and (20) establish the NLS model as a special continuum limit 
of the anisotropic Heisenberg model for arbitrary spin s. Note that the Zeeman term 
appears in (20) only in the subtracted terms and effects no change at all. The external 
magnetic field Ho might also be scaled, but resulting in less interesting Hamiltonians. 
Finally we point out that the mapping of the anisotropic Heisenberg model's Hilbert 
space into the considerably larger Hilbert space of the NLS model is injective and the 
correspondence established above applies only to the low-energy excitations of the 
NLS model. 

2.4. Energy eigenvalues and Bethe ansatz eigenstates of the N L S  model 

We now present a first application of the mapping constructed in 9 9  2.1-2.3. In order 
to obtain the Bethe ansatz solution of the NLS model (given previously by Thacker 
[ 11)  the mapping procedure can be applied systematically to the Bethe ansatz solution 
of the spin-; X X Z  model (given by Yang and Yang [3], des Cloizeaux and Gaudin 
[4] and Gochev [5]). We understand this as an example of how to obtain the Bethe 
ansatz solution of a quantum field theoretical model in a simple and systematical way 
from a corresponding discrete model. The corresponding elements of the Bethe ansatz 
solutions of the two models are listed in table 1 .  

2.5. Bound states of the Heisenberg ferromagnet f o r  arbitrary spin 

We now present a second application of the mapping constructed in 00 2.1-2.3. In 
the foregoing sections the mapping of the anisotropic Heisenberg model onto the 
non-linear Schrodinger model has been discussed. As a matter of fact, it has been 
shown that the Bethe ansatz for the spin-4 X X Z  model is transformable to a Bethe 
ansatz for the NLS model and that the well known eigenstates and eigenvalues of the 
NLS model can thus be reproduced. The question arises whether it is possible to invert 
this mapping and to make use of the well known eigenstates and eigenvalues of the 
NLS model in order to learn more about the X X Z  model for general s. That is indeed 
possible. 

Following the argument of Schneider [9], the continuum limit can be used to study 
features of the discrete model at the point P = 0, i.e. in the centre of the first Brillouin 
zone. In particular the n-boson bound-state energy can be used to derive a formula 
for the n-magnon bound state energies of the Heisenberg ferromagnet for general s, 
valid for small anisotropies A - 1 << 1 ,  and P = 0. 

In order to invert the mapping, the continuum limit (19) and (20) for the energy 
eigenvalues ( m  = 0) 

A = 1 - sca 

E,,, -constant 

constant = HoS' - 2s'nca 

- E N L S  sa * 4-0 

is approximated by an equation that can be solved for ENLS, i.e. 

A - l = - s c a  

Ex,= -constant 
ENLS. 

sa * A - 1 -  I 
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Table 1. Corresponding elements of the Bethe ansatz solutions of the spin-; XXZ and 
NLS models under the mapping given by formulae (19) and (20). 

spin-4 XXZ model NLS model 

\ 

+ H ,  1 Si 
, = I  

n-magnon energies 

+ c* ' (x)*+(xj*(x)~(x) )  

n-boson energies 

Ex,,= c ( A - C O S ~ , ) + H ~ S '  
, = I  

e x p ( i k J N j = ( - l ) " - ' e x p ( - i L O ( k J ,  k, j )  

j =  1 , 2 , .  . . , n 

O(p, q j :  scattering phase shift 

2A el4 - 1 - exp[i( p + q j ]  

2A elp - 1 - exp[i( p + q)]  e x p ( W p ,  9)) = 

n-magnon eigenstates 

lk,k,...k")EIA 

P (  1 j, P ( 2 ) ,  . . . , P (  n j is a permutation of 
1 , 2 , .  . . , n and k , ,  k,, . , . , k ,  are n distinct real or 
complex numbers. 

n-magnon bound-state energies for A > 1 

cosh &J = A  O C P S 2 7 r  n = 1 , 2  , . . . ,  N .  

E,,= 1 k:+nm2 
, = I  

j = 1 , 2 , .  . . , n 
A(p - q j: scattering phase shift 

p - q - i c  
exp[iA(p-q)]=- 

p - q + i c  

n-boson eigenstates 

~ ( x ,  -xJ j=O(x ,  -x , j -O(x,-x, j  is the double-step 
function and k , ,  k , ,  . . . , k,, are n distinct real or 
complex numbers. 

n-boson bound-state energies for c c 0 

P 2  c 2  
Eh,,n(P) = 

n 12 

o s  P c2r, n = 1 , 2 , .  . , . 

n ( n 2  - I j + nm2 

Obviously the approximation (22) is only valid in the limit of weak anisotropy 
A - 1 << 1, but for arbitrary s and arbitrary c. 

Using formula (22) and the case m = 0 from table 1 one obtains for the energies 
of n-magnon bound states of the Heisenberg ferromagnet in the continuum and 
weak anisotropy limits for P = 0: 

2 EXXZ,n ,P=O = sa E N L S , n , P = O +  HoS' - 2s'nca 
C2 

= su2( -12 n( n z  - 1) 

( A - 1 ) * n ( n 2 - 1 )  
24s2 

This expression, being valid for arbitrary s, can be compared with the known exact 
bound-state energies for s = $ listed in table 1: 
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sinh 4 
E , , P = o , 3 = i  = H,S'+- sinh nd (cosh n 4  - 1) 

(A-1)'n(n2-l)  
6 

+ O(A - 1)3 .  = Has' + n ( A -  1) - 

Comparison shows that expression (23) agrees for s = f to second order in ( A -  1 )  with 
the Taylor expanded exact result (24). That means the continuum limit permits us to 
calculate the exact bound-state expressions at P = 0 in the appropriate weak anisotropy 
limit ( A -  1 << 1 ) .  

2.6. Mapping of the spin-f X X Z  model onto a fermion field theory with 6 function 
interaction 

As a third application of the mapping procedure developed in 9 9  2.1-2.3 we note that 
the well known transformation of the spin-f X X Z  model onto a chain of interacting 
spinless fermions by means of a Jordan-Wigner transformation [ll-151 can be used 
to derive the Bethe ansatz solution of a continuous Fermi field theory. The continuum 
limit is reached by means of the procedure explained in !j 2.3. This results in the 
Hamiltonian 

Xxxz = - J A N + ( A - l )  dx @t(x)@(x)+$a2 dx dx@'(x)dx@(x) I I 
-aA I dx @t(x)@'(x)@(x)@(x)+O(a3) 

where the @(x),  Qt(x)  are Fermi field operators obeying canonical anticommutation 
relations. The various terms in (25) are multiplied with different powers of a. Only 
by introducing the parametrisation 

A = - f ca + im2a2 (26) 

can a fermion field theory with non-trivial interactions result in the limit N + CO, a -f 0, 
L= Nu =constant. In that case we obtain ( E o =  - $ A N ) :  

X x x z - E O + ( l + ~ c a )  dx@'(x)@(x) 

$ a 2  
I 

- J dx(a,@'(x)a,@(x) + m2@+(x)@(x) + c@t(x)@t(x~@(x)@(x)) .  (27) 
a-0  

Formulae (26) and (27)  establish the fermion field theory defined by 

XF = dx(d,@'(x)a,@(x) + m2@'(x)@(x) + c@t(x)@t(x)@(x)@(x)) (28) J 
as a special continuum limit of the X X Z  model in the neighbourhood of the point 
A = 0. The complete Bethe ansatz solution of the spin-: X X Z  model is mapped onto 
a Bethe ansatz solution for XF. 
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3. The multicomponent NLS model as a continuum limit of anisotropic S U ( X )  models 

We now proceed to construct analogues of the XXZ Hamiltonian with SU(X) sym- 
metry. The continuum limit of these is shown to be the multicomponent non-linear 
Schrodinger model solved by Yang [16]. That is achieved by extending our previous 
treatment of this problem from SU(2) to SU(X). We study the case SU(3) in detail: 
the closest conceivable analogue of Hamiltonian (1) for the SU(3) case is the operator 

N R  

H I = - 2  c A,Ta, iTu, ,+I+fAN 
i = l  a = l  

with parameters A I  = A 2  = A 4  = A S  = 1, A3 = A 6  = A, = A g  = A. Here the Tu are the gen- 
erators of the SU(3) Lie algebra satisfying the commutation relations [Tu, T']= 
i fapy T, with completely antisymmetric structure constants fupy (tabulated, e.g., 
in ch VI1 of reference [17]). Equation (29) can be rewritten in the form 

N 

Here T3 and Tg represent the two generators forming the Cartan subalgebra of SU(3), 
E :  and E ,  are raising and lowering operators for the weights and the (Y represent 
root vectors a' = (1/2, &/2), a2 = (1/2, -&/2), a3 = (1,0). The transformation of 
operators is given by 

For details see [17]. 
Using the defining representation of SU(3) generated by the 3 x 3  matrices Tu 

explained above, the three basis states are obtained from the state with highest weight 
vector 11/2,1/(2&)) by application of E , )  and E i 3 .  In figure 3 the weight diagram 
is plotted together with the action of the raising and lowering operators onto the states 

Ebl * 
I 1 / 2 , 1  I12.13)) 

- 
T3 

Figure 3. SU(3) weight diagram. States are represented by their weight vectors and it is 
shown how the states can be transformed into each other by application of the raising and 
lowering operators E : ' .  
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represented by their weight vectors pi, i = 1,2,3.  Operators not explicitly indicated 
between two neighbouring states annihilate these states. 

The generators of the SU(3) Lie algebra may be represented in the usual way by 
either three coupled bosons or three coupled fermions according to 

where [xn, xp] = i Cfabcxc, provided that 
c 

[b ; ,  b:l* = 8, [b:, b:]*=[b,, bjl==O. (33) 

Using the Fact that b: b,  + brb2+ b:b3 = 1, one may eliminate one of the bosons 
(fermions). This defines a SU(3) analogue of the Holstein-Primakoff or Dyson-Maleev 
transformation. We use the latter transformation to represent the set of E: operators 
by two bosons (fermions) b , ,  b2 according to 

Inserting (34) into (30), a representation of the Hamiltonian HI in terms of a chain 
of bosons (fermions) is obtained which is manifestly symmetric with respect to the 
two bosons (fermions) b ,  and b2.  The continuum limit can be studied by applying 
the procedure of Q 2.3, i.e. formulae (14)-(20), step by step. This yields 

Hi - J dx  x , =  1.2 2(A - 1 )$I$, 
a 2  

provided that the scaling relation 

A = 1 - ;CO (36) 

is used, where a is the lattice constant. Thus the two-component NLS model with either 
boson or fermion fields $#(x)  is shown to be a special continuum limit of the SU(3) 
chain with anisotropic interactions. By using A = 1 -4ca +4m2a2  instead of (36), a rest 
mass term will survive the continuum limit in the same way as in (20). 

It is obvious how to generalise the above calculations to SU(X). The state with 
highest weight (any weight can be used as a highest weight) is chosen as a formal 
vacuum state and the A” - 1 lowering operators E acting on it become X - 1 elementary 
bosons (fermions) b,,  corresponding to X -  1 boson fields (fermion fields) $,(x) in the 
continuum limit. The anisotropy is induced by multiplying the remaining ( X -  1) x 
(X-2)/2 exchange terms E ~ , , E j , , + , +  Ej,,E;.,+, by A # 1. These (A”- 1)(X-2) /2  
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operators are associated with the vertices of the ( X  - 2) simplex obtained by omitting 
the state with highest weight. The terms associated with operators Hy of the Cartan 
subalgebra are likewise to be multiplied by A. 

The anisotropic SU(2s-t 1) chain operator is of a form similar to (30), i.e. 

Hs = -2 i (z ( ~ ~ , , E ~ , ~ + , + E ~ , , E ~ . l + l )  
1 = 1  P 

+ A  ( E ~ , l E p . l + l  + E p . , E $ , , + l )  + A c H , , H , , + I  - A/3) (37) 
P 

where Q, j3 and y sum over the roots indicated above. 
In our special continuum limit this model yields the ( X  - 1)-component NLS model 

solved by Yang [ 161 by means of a nested Bethe ansatz. The second quantised operator 
is obtained in the form (35) with the replacement i ,  j = 1,2, . . . , K- 1. 

4. Summary and discussion 

In this paper various mappings have been constructed and applied relating the X X Z  
and NLS Hamiltonians and their respective solutions. There is hardly a problem with 
one direction of the mapping ( X X Z  model + NLS model), the only difficulty being the 
Dyson-Maleev transformation with the additional states of the boson Hilbert space. 
However, the mapping between the physical states is exact and the NLS model with 
its proper commutation relations emerges and Thacker’s Bethe ansatz solution of the 
NLS model [ l ]  is reproduced. 

In the reverse direction of the mapping (NLS model+ X X Z  model) there are in 
addition to the notorious problem with the unphysical states two further problems: 
there are two limiting procedures which can only approximately be reverted. First the 
continuum limit (15) which implies that all reverted results hold only for long 
wavelengths ( k  = 0) and then the special rescaling limit (19) and (20) which is unavoi- 
dable in order to force the O ( a 3 )  terms to approach zero. These terms cannot be 
reconstructed in the inversion, rendering the bound-state energies (23) undetermined 
in higher orders. In the extreme quantum case s = $ the results of Kulish and Sklyanin 
[8] are recovered by specialising formulae (19) and (20) of the present work to that 
case. To summarise: it is found that it is possible to ‘extract’ the NLS model from the 
more complicated X X Z  model by means of the formal expansion (18) and the special 
continuum and rescaling limits (19) and (20). Most of the information concerning the 
non-linear dynamics of the Heisenberg model is lost in these limits, whereas the earlier 
formulae (13) or (18) still contain the full dynamics within the O(a3)  terms-which 
are not required to be small! The expansion in powers of a is only a formal one and 
is solely introduced in order to isolate the NLS dynamics from the rest of the non-linear 
dynamics of the Heisenberg model. It is instructive to note that the full dynamics of 
the isotropic Heisenberg ferromagnet ( A  = 1) has also been studied by means of a NLS 

equation in the classical [18-201 and quantum [21-23) cases. This approach is 
manifestly different from ours, because the continuum limit is done in a different 
fashion (within our procedure the isotropic Heisenberg ferromagnet is mapped onto 
a free boson field theory and the coupling constant of our N L S  model is proportional 
to the parameter A - 1, measuring the deviation from isotropy!) The various possible 
approaches show that the NLS model has several non-isomorphous applications in the 
study of Heisenberg spin chains. 
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The anisotropic exchange operators for SU(X), the continuum limit of which we 
have shown to be the (X-1)-component NLS models, are novel. Representing the 
SU(X) generators as products of SU(2) generators, spin chain models with tensor 
interactions arise. Isotropic exchange of this type ( A  = 1) has been studied by several 
authors [24-281 in various contexts. These isotropic models-sometimes called 
Schrodinger Hamiltonians-are exactly soluble by means of a nested Bethe ansatz. 
For our anisotropic models it can be shown that the nested Bethe ansatz works for 
A = * l ,  0. For A # *l ,  0 it works only for the completely symmetric and completely 
antisymmetric representations of the permutation group S,. For other representations 
of S N  the triangle equation cannot be verified using exponential functions. Transfer 
matrix techniques must be applied in order to obtain the general solution for arbitrary 
A. Details will be published elsewhere. 
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